CHAPTER II.

PHYSIOGRAPHY.

§ 1. General Description of Australia.

I. Geographical Pesition.-(i) General. The Australian Conmonwealth. which includes the island continent of Australia proper and the island of Tasmania, is situated in tho Southern Hemisphere, and comprises in all an area of about $2,974,581$ square miles, the mainland alone containing about $2,948,366$ square miles. Bounded on the west and east by the Indian and Pacific Oceans respectively, it lies between longitudes $113^{\circ} 9^{\prime}$ E. and $153^{\circ} 39^{\prime}$ E., while its northern and southern limits are the parallels of latitude $10^{\circ} 4^{\prime} \mathrm{S}$. and $39^{\circ} 8^{\prime} \mathrm{S}$., or, including Tasmania, $43^{\circ} 39^{\prime} \mathrm{S}$. On its north are the Timor and Arafura Seas and Torres Strait-on its sonth the Southern Ocean and Bass Strait. The extreme points are "Steep Point" on the west, "Cape Byron" on the east, "Cape York" on the north, "Wilson's Promontory" on the south, or, if Tasmania be included, "South-East Cape."
(ii) Tropical and Temperate Regions. Of the total area of Australia nearly 40 per cent. lies within the tropies. Assuming, as is usual, that the latitude of the Tropic of Capricorn is $23^{\circ} 30^{\prime} \mathrm{S}$. (its mean value for 1934 was $23^{\circ} 26^{\prime} 52.10^{\prime \prime}$), the areas within the tropical and temperate zones are approximately as follow :-

AUSTRALIA-AREAS OF TROPICAL AND TEMPERATE REGIONS.

(States and Territory Pirtially within Tromics.)

Thus the tropical part is roughly about onc-half (0.530) of the three territories mentioned above, or about five-thirteenths of the whole of Australia (0.386).
2. Area of Australia compared with Areas of other Countries.-It is not always realized that the area of Australia is almost as great as that of the United States of America, four-fifths of that of Canada, more than one-fifth of the area of the British Empire, nearly three-fourths of the whole area of Europe, and about 25 times as large
as Great Britain and Ireland. This great area, coupled with a limited population, renders the solution of the problem of Anstralian development a particularly difficult one. The areas of Australia and of certain other countries are given in the following table:-

AREA OF AUSTRALIA AND OF OTHER COUNTRIES.

Country.	Area.	Country	Area.
Continental Divisions-	Sq. miles.	Africa-continued.	Sq. miles.
Europe	4,408,000	Belgian Congo	918,000
Asia .	16,177,000	Algeria	847,552
Africa	IT,566,000	Angola $\quad \ddot{ }$	476,712
North and Central America	11,566,00	Union of South Africa	472,347
and West Indies	8,648,000 :	Egypt.. .. .-	383,000
South America . . .	7,004,000	Nigeria and Protectorate..	372,674
Australasia and Polynesia	3,301,000 :	T Tanganyika Territory .	360,000
	- \cdots-.	Abyssinia ...	350,000
Total, exclusive of Arctic		Tripolitania ..	347,500
	51,104,000	South. West Africa	318,099
	51,104.000	Yortuguese East Africa	297,657
		Northern Rhodesia	288,000
Europe-		Bechuanaland Protectorate	275,000
Soviet Union (Russia)	2,316,214	Madagascar . \quad.	241,094
France ..	212,659	Kenya Colony and Protectorate	
Spain (inc. possessions)	196,607 :	Cyrenaica	212,000
Germany	181,738	,	
Sweden	173,349		
Poland	149,274	North and Central America-	
Finland	132,589	Canada	3,684,463
Norway	124,556	United States of America	3,026,789
Rumania	122,282	Mexico	767,198
Italy	119,713	Alaska	586,400
Yugoslavia ..	95,558	Newfoundland and Labra-	580,400
Great Britain and Northern		dor	162,734
Ireland	94,633	Nicaragua \quad.	51,660
ia-		South America-	
		Brazil	3,275,510
China and Dependencies	5,559,840 $4,277,655$	Argentine Republic	1,079,965
British India and Adminis-		Bolivia	514,465
tered Territories	1,318,3.46	Peru .. $\quad . \quad$.	482,133
Arabia and Autonomous	1,318,3.7 6	Colombia (exc. of Panama)	447,536
States	1,000,000	Venczuela	352,05 I
Persia	628,000	Chile .	285,133
Dutch East Indies	572,604	Ecuador	275,936
Feudatory Indian States.	490,333		
Turkey	285,159	Australasia and Polynesia-	
Japan and Dependencies..	260,644	Commonwealth of Austra	
Afghanistan	245,000	Dutch New Guinea	2,974,581
Siam ..	200,234	Dutch New Guinea ${ }^{\text {. }}$	160,692
	200,234	New Zealand and Depen. dencies	104,751
		Territory of New Guinea ..	93,000
Af		Papua	90,540
French West Africa	1,604,159		
Anglo-Egyptian Sudan . .	1,008,100		
French Equatorial Africa	912,049	British Empire	13,355,426

The figures quoted in the table have been extracted from the Statesman's Year Book or the Statistical Year Book of the League of Nations.
3229.-3
3. Areas of Political Subdivisions.-As already stated, Australia consists of six States and the Northern and Federal Capital Territories. The areas of these, and their proportions of the total of Australia, are shown in the following table :-

4. Coastal Configuration.-(i) General. There are no striking features in the configuration of the coast ; the most remarkable indentations are the Gulf of Carpentaria on the north, and the Great Australian Bight on the south. The Cape York Peninsula on the extreme north is the only other remarkable feature in the outline. In Year Book No. I, an enumeration of the features of the coast-line of Australia was given (see pp. 60 to 68).
(ii) Coast-line. The lengths of coast-line, exclusive of minor indentations, of each State and of the whole continent, and the aren per mile of coast-line, are shown in the following table :-

(a) Including Federal Capital Territory.
(b) Area $2,948,366$ square miles.

For the entire Commonwealth of Ausiralia this gives a coast-line of $\mathrm{I} 2,210$ miles and an average of 244 square miles for one mile of coast-line. According to Strelbitski, Europe has only 75 square miles of area to each mile of coast-line, and, according to recent figures, England and Wales have only one-third of this, viz., 25 square miles.
(iii) Historical Significance of Coastal Named T.t is interesting to trace the voyages of some of the early navigators by the names bestowed by them on various coastal features-thus Dutch names are found on various points of the Western Australian coast, in Nuyts' Archipelago, in the Northern Territory, and in the Gulf of Carpentaria:

Captain Cook can be followed along the coasts of New South Wales and Queensland ; Flinders' track is easily recognized from Sydney southwards, as far as Cape Catastrophe, by the numerous Lincolnshire names bestowed by him; and the French navigators of the end of the eighteenth and the beginning of the nineteenth century have left their names all along the Western Australian, South Australian. and Tasmanian coasts.
5. Geographical Features of Australia.-In each of the earlier issues of this Year Book fairly complete information has been given concerning some special geographical element. The nature of this information and its position in the various Year Books can be readily ascertained on reference to the special index following the index to maps and graphs at the end of this work.
6. Fauna, Flora, Geology, and Seismology of Australia.-Special articles dealing with these features have a ppeared in previous Year Books, but limits of space naturally preclude their repetition in each volume. As pointed out in 5 supra, however, the nature and position of these articles can be readily ascertained from the special index. A reference to Barisal Guns will be found in VoI. IX., p. 56.

§ 2. Climate and Meteorology of Australia.*

I. Introductory.-In Year Book No. 3, pp. 79, 80, some account was given of the history of Australian meteorology, including reference to the development of magnetic observations and the equipment for the determination of various climatological records. In Year Book No. 4, pp. 84 and 87 , will be found a short sketch of the creation and organization of the Commonwealth Bureau of Meteorology, and a résumé of the subjecto dealt with at the Meteorological Conference in 1907. Space will not permit of the inclusion of this matter in the present issue.
2. Meteorological Publications.-Reference to publications issued by the Central Meteorological Bureau will be found in Official Year Book No. 22, pp. 40, 4^{T}. The following publications have since been issued :-Volume of "Results of Rainfall Observations made in Western Australia," for all years of record to 1927; Map of Normal Meteorological Conditions in Australia affecting Aviation; and a Paper "A Basis for Seasonal Forecasting ", by H. A. Hunt.
3. General Description of Australia.-A considerable portion (0.530) of three divisions of Australia is north of the tropic of Capricorn-that is to say, within the States of Queensland and Western Australia, and the Northern Territory; no less than 1, 449.320 square miles belong to the tropical zone, and $1,020,720$ to the temperate zone. The whole area of Australia within the temperate zone, however, is $1,825,261$ square miles; thus the tropical part is about o. 386 , or about five-thirteenths of the whole, or the "temperate" region is half as large again as the "tropical" (more accurately 1.588). By reason of its insular geographical position, and the absence of striking physical features, Australia is, on the whole, less subject to extremes of weather than are regions of similar area in other parts of the globe, and latitude for latitude Australia is, on the whole, more temperate.

The altitudes of the surface of Australia range up to a little over 7,300 feet, hence its climato embraces a great many features, from the characteristically tropical to what is essentially alpine, a fact indicated in some measure by the name Australian Alps given to the southern portion of the great Dividing Range.

On the coast, the rainfall is often abundant and the atmosphere moist, but in some portions of the interior it is very limited, and the atmosphere dry. The distribution of forest, therefore, with its climatic influence, is very uneven. In the interior, in places, there are fine belts of trees, but there are large areas also which are treeless, and where the air is hot and parching in summer. Again, on the coast, even so far south as latitude 35°, the vegetation is tropical in its luxuriance, and to some extent also in character. Climatologically, therefore, Australia may be said to present a great variety of features.
4. Meteorological Divisions.-(i) General. Reference to the divisions adopted by the Commonwealth Meteorologist will be found in Official Year Book No. 22, p. 41.

[^0](ii) Sperial Climatological Stations. The latitudes, longitudes, and altitudes of special stations, the climatological features of which are graphically represented hereinafter are as follow :-

SPECIAL CLIMATOLOGICAL STATIONS-AUSTRALIA.

Locality.	Height above, Latitude. Longitude. Sea S . E. Level.					Localits.	Height above Sea Level.	Latitude. s.		$\begin{gathered} \text { Longitude. } \\ \text { E. } \end{gathered}$	
	Fect.	deg.	min.	eg.	in		Feet.	deg.	min.	deg.	min.
Perth	197		57	115	50	Canberra	1,837			149	15
Adelaide	140		56	138	3.5	Darwin	97		28	130	51
Brisbane	137	27	28	153	,	Alice Springs	1,926		38	133	37
Sydney	138		52	151	12	Dubbo	870		18	148	35
Mielbourne	115		49	144	53	Laverton, W.A.	1,530		40	122	23
Hobart	177		53	147		Coolgardie	1,389			121	

5. Temperatures.-(i) Comparisons with other Countries. In respect of Australian temperatures generally, it may be pointed out that the isotherm for 70° Fahrenheit extends in South America and South Africa so far south as latitude 33°, while in Australia it reaches only so far south as latitude 30°, thus showing that, on the whole, Australia has latitude for latitude a more temperate climate than other places in the Southern Hemisphere.

The comparison is even more favourable when the Northern Hemisphere is included, for in the United States the 70° isotherm extends in several of the western States so far north as latitude 41°. In Europe, the same isotherm reaches almost to the southern shores of Spain, passing, however, afterwards along the northern shores of Africa till it reachos the Red Sea, when it bends northward along the eastern shore of the Mediterranean till it reaches Syria. In Asia, nearly the whole of the land area south of latitude $40^{\circ} \mathrm{N}$. has a higher temperature than 70°.

The extreme range of shade tomperatures in summer and winter in a very large part of Australia amounts to probably only 81°. In Siberia, in Asia, the similar range is no less than 171°, and in North America 153°, or approximately double the Australian range.

Along the northern shores of Australia the tomperatures are very equable. At Darwin, for example, the difference in the means for the hottest and coldest months is only 8.5°, and the extreme readings for the year, or the highest maximum on record and the lowest minimum, show a difference of under 50°.

Coming southward, the extreme range of temperature increases gradually on the coast, and in a more pronounced manner inland.
(ii) Hottest and Coldest Parts. A comparison of the temperatures recorded at coast and inland stations shows that, in Australia, as in other continents, the range increases with increasing distance from the coast.

In the interior of Australia, and during exceptionally dry summers, the temperature occasionally reaches or exceeds 120° in the shade, and during the dry winters the major portion of the country to the south of the tropics is subject to ground frosts. An exact knowledge of temperature disposition cannot be determined until the interior becomes more settled, but from data procurablo it would appear that the hottest area of the
continent is situated in the northern part of Western Australia about the Marble Bar and Nullagine goldfields, where the maximum shade temperature during the summer sometimes exceeds roo ${ }^{\circ}$ continuously for days and weeks. The coldest part of Australia is the extreme south-east of New South Wales and extreme east of Victoria-the region of the Australian Alps. Here the temperature seldom, if ever, reaches 100° even in the hottest of seasons.

Tasmania as a whole enjoys a most moderate and equable range of temperature throughout the year, although occasionally hot winds may cross the Straits and cause the temperature to rise to 100° in the low-lying parts.
(iii) Monthly Mraximum and Minimum Temperatures. The normal monthly maximum and minimum temperatures can be best shown by means of graphs, which exhibit the nature of the fluctuation of each for all available years. In the diagram herein for nine representative places in Australia, the upper heavy curves show the mean maximum, and the lower heavy curves the mean minimum temperatures based upon daily observatious, while the other curves show the humidities.
6. Humidity.-After temperature, humidity is the most important element of climate, as regards its effect on human comfort, rainfall supply, and in connexion with engineering problems generally.

In this publication the absolute humidity has been graphically represented in the form of inches of vapour pressure (i.e., that portion of the barometric pressure due to vapour). It is this total quantity of moisture in the air which affects personal comfort, plays an important part in varying the density of the atmosphere, and in heating and refrigerating processes. The more commonly quoted value. called the relative humidity, refers to the ratio which the actual moisture contents of the air bear to the total amount possible if saturation existed at the given temperature, and is usually quoted as a percentage. The relative humidity is an important factor in all drying operations, but is much less important than the absolute humidity as affecting animal life.

The mean monthly vapour pressure has also been added to the tables of climatological data for the capital cities included herein.

The normal monthly values of rapour pressure, it should be noted, combine to make the annual curve for this element which is comparable with the maximum and minimum temperature curves. but the relative himidities consisting as they do of the extremes for each month, do not show the normal annual fluctuation which would be approximately midway between the extremes.

The order of stations in descending values of vapour pressure is Darwin, Brisbane, Sydney, Pertb, Melbourne, Adelaide, Canberra, Hobart and Alice Springs, while the relative humidity diminishes in the order, Sydney, Canberra, Darwin, Melbourne, Brisbane, Hobart, Perth Adelaide, and Alice Springs.
7. Evaporation.-(i) General. The rate and quantity of evaporation in any territory is influenced by the prevailing temperature, and by atmospheric humidity, pressure, and movement. In Australia, the question is of perhaps more than ordinary importance, since in its drier regions water has often to be conserved in "tanks "* and dams. The magnitude of the economic loss by evaporation will be appreciated from the tabular records herein, which show that the yearly amount varies from about 31 inches at Hobart to 96 inches at Alice Springs in the centre of the continent. Over the inland districts of the continent it has been calculated that evaporation equals the rainfall where the annual totals are about 36 inches, the variations above and below this quantity being inverse.

[^1](ii) Monthly Evaporation Curves. The curves showing the mean monthly evaporation in various parts of Australia disclose how characteristically different are the amounts for the several months in different localities. The evaporation for representative places is shown on the diagram herein.
(iii) Loss by Evaporation. In the interior of Australia the possible evaporation is greater than the actual rainfall. Since the loss by evaporation depends largely on the exposed area, tanks and dams so designed that the surface shall be a minimum are advantageous. Further, the more protected from the direct rays of the sun and from winds, by means of suitable tree planting, the less will be the loss by evaporation. These matters are naturally of more than ordinary concern in the drier districts of Australia.
8. Rainfall.-(i) General. As even a casual reference to climatological maps indicating the distribution of rainfall and prevailing direction of wind would clearly show, the rainfall of any region is determined mainly by the direction and route of the prevailing winds, by the varying temperatures of the earth's surface over which they blow, and by the physiographical features generally.

Australia lies within the zones of the south-east trades and prevailing westerly winds. The southern limit of the south-east trade strikes the eastern shores at about 30° south latitude, and, with very few exceptions, the heaviest rains of the Australian continent are precipitated along the Pacific slopes to the north of that latitude, the varying quantities being more or less regulated by the differences in elevation of the shores and of the chain of mountains upon which the rain-laden winds blow from the New South Wales northern border to Thursday Island. The converse effect is exemplified on the north-west coast of Western Australia, where the prevailing winds blowing from the interior of the continent instead of from the ocean, result in the lightest coastal rain in Australia.

The westerly winds, which skirt the southern shores, are responsible for the very reliable, although generally light to moderate, rains enjoyed by the south-western portion of Western Australia, by the south-eastern agricultural areas of South Australia, by a great part of Victoria, and by the whole of Tasmania.
(ii) Factors determining Distribution and Intensity of Rainfall. (iii) Time of Rainfall. In Official Year Book No. 6 (see pp. 72 to 74) some notes were given of the various factors governing the distribution, intensity, and period of Australian rainfall.
(iv) Wettest and Driest Regions. The wettest known part of Australia is on the north-east coast of Queensland, between Port Douglas and Cardwell, where three stations situated on, or adjacent to, the Johnstone and Russell Rivers have an average annual rainfall of between 142 and 165 inches. The maximum and minimum falls there are :Goondi, 24 I .53 in 1894 and 67.88 inches in 1915 , or a range of 173.65 inches; Innisfail, 211.24 in 1894 and 69.87 inches in 1902, or a range of 141.37 inches; Harvey Creek, 254.77 in 1921 and 80.47 inches in 1902, or a range of 174.30 inches.

On four occasions more than 200 inches have been recorded at Goondi, the last of these being in 1910, when 204.82 inches were registered. The record at this station covers a period of 48 years.

Harvey Creek, in the shorter period of 28 years, has four times exceeded 200 inches, the total for 1921 being 254.77 inches, and at the South Johnstone Sugar Experiment Station, where a gauge was established fifteen years ago, 202.52 inches were recorded in 1921 .

In Tasmania the wettest part is in the West Coast region, the mean annual rainfall at lake Margaret being 145.03 inches, with a maximum of 175.12 inches in 1924 .

Tho driest known part of the continent is in the Lake Eyre district in South dustralia (the only part of the continent below sea level), where the annual average is only 5 inches, and where the fall rarely exceeds 10 inches for the twelve months.

The inland districts of Western Australia were at one time regarded as the driest part of Australia, but authentic observations in recent years over settled districts in the east of that State show that the annual average is from 10 to 12 inches.
(v) Quantities and Distribution of Rainfall. The departure from the normal rainfall increases progressively from the southern to tho northern shores of the continent, and similarly also at all parts of the continent subject to capricious monsoonal rains, as the comparisons hereunder will show. The general distribution is best scen from the rainfall map herein, which shows the areas subject to average annual rainfalls lying between certain limits. The arcas enjoying varying quantities of rainfall determined from the latest available information are shown in the following table :-

(a) Including Federal Capital Turritory. (b) Over an area of 2,777 square miles no records are available.

Referring first to the capital cities, the records of which are given in the next table, it will be seen that Sydney, with a normal rainfall of 47.84 inches, occupies the chief place; Brisbane, Perth, Melbourne, Hobart, Canberra, and Adelaide following in that order, Adelaide with 21.1_{4} inches being the driest. The extreme range from the wettest to the driest ycar is greatest at Brisbane (72.09 inches) and least at Adelaide (19.48 inches).

In order to show how the rainfall is distributed throughout the year in various parts of the continent, the figures for representative towns have been selected. (See map.) The figures for Darwin, typical of the Northern Territory, show that nearly the whole of the rainfall occurs there in the summer months, while little or none falls in the middle of the year. The figures for Perth, as representing the south-western part of the continent, are the reverse, for while the summer months are dry, the winter ones are very wet. In Melbourne and Hobart the rain is fairly well distributed throughout the twelve months, with a maximum in October for the former, and in November for the latter. The records at Alice Springs and Daly Waters indicate that in the central parts of Australia the wettest months are in the summer and autumn. In Queensland, as in the Northern Territory, the heaviest rains fall in the summer months, but good averages are also maintained during the other seasons.

On the coast of New South Wales, the first six months of the year are the wettest, with a maximum in the autumn ; the averages during the last six months are fair, and moderately uniform. Generally it may be said that approximately one-third of the
area of the continent, principally in the eastern and northern parts, enjoys an annual average rainfall of from 20 to 50 or more inches, the remaining two-thirds averaging from 5 to 20 inches.
(vi) Curves of Rainfall and Evaporation. The relative amounts of rainfall and evaporation at different times through the year are clearly indicated in the graphs herein. Inspection thereof will show how large is the evaporation when water is fully exposed to the direct rays of the sun and to wind.
(vii) Tables of Rainfall.-(a) Years 1902 to 1934 . The table of rainfall for a long period of years for each of the various Australian capitals affords information as to the variability of the fall in successive years, and the list of the more remarkable falls furnishes information as to what may be expected on particular occasions. The capitals are dealt with in the order in which they occur in the adopted meteorological divisions.

RAINFALL-AUSTRALIAN CAPITAL CITIES.

(a) Records commenced in iniz; are not available for the years 1921 to 1923.

[^2](b) Ten Years' Means, 1908 to 1928. The mean rainfall for the decennia ended 1908 , 1918 and 1928, respectively, is given hereunder :-

RAINFALL-AUSTRALIAN CAPITAL CITIES, TEN YEARS' MEANS.

(a) Not available.
(b) Seven years ended 1918.
(c) Years 1919, 1920, and 1924 to 1931 .
9. Remarkable Falls of Rain.-The following are the most remarkable falls of rain in the various States and in the Northern Territory which have occurred within a period of twenty-four hours. In New South Wales and Queensland falls of less than 20 inches in the twenty-four hours have not been included. For other very heavy falls at various localities reference may be made to Official Year Book No. 14, pp. 60 to 64 and No. 22, pp. 46 to 48 :-
heayy rainfalls -NEW SOUTH Wales, up to 1934, inclusive.

heavy rainfalls--WESTERN aUSTRALIA, UP T0 1934, INCLUSIVE.

HEAVY RAINFALLS-NORTHERN TERRITORY, UP TO 1934, INCLUSIVE.

(a) Approximate only, aq gauge was washed away.
heavy rainfalls -SOUTH aUSTRALIA, UP T0 1934, inclusive.

ANNUAL FLUCTUATIONS OF NORMAL MAXIMUM AND MINIMUM TEMPERATURE AND HUMIDITY.

Explanation.-The upper and lower heavy lines in each graph represent the mean maximum and mean minimum temperatures respectively. The Fahrenheit temperature scales are shown on the outer edge of the sheet under " F " and the centigrade scales in the two inner columns under " C."

The broken line shows the normal absolute humidity in the form of $9 \mathrm{a} . \mathrm{m}$. vapour pressures for which the figures in the outer " F " columns represent hundredths of an inch of barometric pressure.

The upper and lower fine lines join the greatest and the least monthly means of relative humidity respectively, the figures under the outer columns " F " indicating percentage values.

The curves for temperature and vapour pressure joining the mean monthly values serve to show the annual fluctuation of these elements, but the relative humidity graphs joining the extreme values for each month do not indicate any normal annual variation.

Comparison of the maximum and minimum temperature curves affords a measure of the mean diurnal range of temperature. At Perth in the middle of January, for instance, there is normally a range of 21° from $63^{\circ} \mathrm{F}$. to $84^{\circ} \mathrm{F}$., but in July it is only 15° from $4^{\circ} \mathrm{F}$. to $63^{\circ} \mathrm{F}$.

The relntive humidity curves illustrate the extreme range of the mean monthly humidity over a number of years.

MEAN MONTHLY RAINFALL AND EVAPORATION.

Explanation.-On the preceding graphs thick lines denote rainfall, and thin lines evaporation, and show the fluctuation of the mean rate of fall or evapora ton per month throughout the year. The results, plotted from the Cimatological Tables herein are shown in inches (see the outer columns), and the corresponding metries scale (centimetres) is shown in the two inner columns. The evaporation is not given for Darwin.

At Perth, Adelaide, Brishane, Melbourne, Hobart, Canberra, Alice Springs, and Coolgardie the results have been obtained from jacketed tanks sunk in the ground. At. Sydney and Dubbo sunken tanks without water jackets are used, whilst at daverton (W.A.) the records are taken from a small portable jacket evaporation dish of 8 inches in dianeter.

The distance for any date from the zero line to the curve represents the average number of inches, reckoned as per month, of rainfall at that date. Thos, taking the curves for Adelaide in the middle of lanuary, the rain falls on the average at the rate of aliout three-fourths of an inch per month or, say, at the rate of about 9 inches per year. In the middle of Jume it, falls at the rate of a little over 3 inches per month, or, say, at the rate of about 37 inches per year. At bubbo, the evaporation is at the rate
 of June.

The mean annual rainfall and evaporation at the places indicated are given in the appended table.
MEAN ANSUAL RAINFALL AND EVAPORATION.

Place.	Rainfall.	$\begin{gathered} \text { Evaporit- } \\ \text { t:0:3. } \end{gathered}$	Place.	Rainfall.	Waporation.
Perth	$\begin{gathered} \operatorname{In} . \\ 34.9 \geq \end{gathered}$	$\ln _{66.22}$	C'anberra	11. 22.96	In 45.93
Adelaide	21.14	55.12	Darwin	59.92	
Brisbane	45.44	55.60	Alice Springs . .	10.60	96.36
Sydney	47.54	39.21]ubho	22.14	66.37
Melboirnc	25.66	39.07	Laverton, W.A.	9.24	4.45.17
Hobart	23.97	31.14	Coolgardie ..	10.20	84.99

MEAN BAROMETRIC PRESSURE.-CAPITAL CITIES.

Explanation.-The lines representing the yearly fluctuations of barometric pressure at the State capital cities are means for long periods, and are plotted from the Climatological Tables herein. The pressures are shown in inches on ahout, $2 \frac{2}{4}$ times the natural scale, and the corresponding pressures in centimetres are also shown in the two inner columns, in which each division represents one millimetre.

Taking the Brisbane graph for purposes of illustration, it will be seen that the mean pressure in the middle of January is about 29.87 inches, and there are maxima in the middle of May and August of about 30.09 inches.

A rea affected and period of duration of the Longest Heal Waves when the Maximum Temperature for conseculive 24 hours reached or exceeded 100° Fah.

Createst number of consecutive days on which the Shade Temperalure was over 100° Fah. at the places indicaled.

49

50

HEAVY RAINFALL-VICTORIA, UP TO 1934, INCLUSIVE.

heavy rainfalls-TASMANIA, UP TO 1934, inclusive.

HEAVY RAINFALLS-FEDERAL CAPITAL TERRITORY, UP T0 1934, INCLUSIVE.

10. Snowfall.-Light snow has been known to fall occasionally so far north as latitude $31^{\circ} \mathrm{S}$., and from the western to the eastern shores of the continent. During exceptional seasons, it has fallen simultaneously over two-thirds of the State of New South Wales, and has extended at times along the whole of the Great Dividing Range, from its sonthern extremity in Victoria so far north as Toowoomba in Queensland. During the winter, for several months, snow covers the ground to a great extent on the Australian Alps, where also the temperature falls below zero Fabrenheit during the night. In the ravines around Kosciusko and similar localities the snow never entirely disappears.

The antarctic " V " shaped disturbances are always associated with the most pronounced and extensive snowfalls. The barometric gradients are very steep where the " trough line" extends northward, and the apexes are unusually sharp-pointed, and protrude into very low latitudes, sometimes even to the tropics.
ir. Hail.-Hail falls most frequently along the southern shores of the continent in the winter, and over south-eastern Australia during the summer months. The size of the hailstones generally increases with distance from the coast, a fact which lends strong support to the theory that hail is brought about by ascending currents. A summer rarely passes without some station experiencing a fall of stones exceeding in size an ordinary hen-egg, and many riddled sheets of light-gauge galvanized iron bear evidence of the weight and penetrating power of the stones.

The hailstones occur most frequently when the barometric readings indicate a flat and unstable condition of pressure. They are almost invariably associated with tornadoes or tornadic tendencies, and on the east coast the clouds from which the stones fall are generally of a remarkable sepia-coloured tint.
12. Barometric Pressures.-The mean annual barometric pressure (corrected to sea-level and standard gravity) in Australia varies from 29. So inches on the north coast to 29.92 inches over the central and 30.03 inches in the southern parts of the continent. In January, the mean pressure ranges from 29.70 inches in the northern and central areas to 29.95 inches in the southern. The July mean pressure ranges from 29.90 inches at Darwin to 30.11 inches at Alice Springs. Barometer readings corrected to mean sea-level and standard gravity have, under anticyclonic conditions in the interior of the continent, ranged as high as 30.78 inches (at Kalgoorlie on the 28th July, 1901) and have fallen as low as 27.55 inches. This lowest record was registered at Mackay during a tropical hurricane ou the zist January, 19r8. An almost equally abnormal reading of 27.88 inches was recorded at Innisfail during a similar storm on the 1oth March, 1918. The mean annual fluctuations of barometric pressure for the capitals of Australia are shown on the graph herein.
13. Wind.-Notes on the distinctive wind currents in Australia were given in preceding Year Books (see No. 0, page 83), but, owing to limitations of space, have not been included herein.
14. Cyclones and Storms.-The "elements" in Australia are ordinarily peaceful, and while destructive cyclones have visited various parts, more especially coastal areas, such visitations are rare, and may be properly described as erratic.

During the winter months, the southern shores of the continent are subject to cyclonic storms, evolved from the V-shaped depressions of the southern low-pressure belt. They are felt most severely over the south-western parts of Western Australia, to the south-east of South Australia, in Bass Strait, including the coast line of Victoria, and on the west coast of Tasmania. Apparently the more violent wind pressures from these cyclones are experienced in their northern half, or in that part of them which has a north-westerly to a south-westerly circulation.

The north-east coast of Queensland is occasionally visited by hurricanes from the north-east tropics. During the first four months of the year, these hurricanes appear to have their origin in the neighbourhood of the South Pacific Islands, their path being a parabolic curve first to the S.W. and finally towards the S.E. Only a small percentage, however, reach Australia, the majority recurving in their path to the east of New Caledonia.

Very severe cyclones, locally known as "willy willies," are peculiar to the northwest coast of Western Australia from the months of November to April, inclusive. They apparently originate in the ocean in the vicinity of Cambridge Gulf, and travel in a south-westerly direction with continually increasing force, displaying their greatest energy near Cossack and Onslow, between latitudes 20° and 22° South. The winds in these storms, like those from the north-east tropics, are very violent and destructive, and cause great havoc amongst the pearl-fishers. The greatest velocities are usually to be found in the south-eastern quadrant of the cyclones, with north-east to east winds. After leaving the north-west coast, these storms either travel southwards, following the coastline, or cross the continent to the Great Australian Bight. When they take
the latter course, their track is marked by torrential rains, as much as 29.41 inches, for example, being recorded in 24 hours at Whim Creek from one such occurrence. Falls of so inches and over have frequently been recorded in the northern interior of Western Australia from similar storms.

Some further notes on severe cyclones and on " southerly bursters," a characteristic feature of the eastern part of Australia, will be found in previous issues of the Official Year Book (see No. 6, pp. 84, 85. 86).

A special article dealing with "Australian Hurricanes and Related Storms" appeared in Official Year Book No. 16, pp. 80-84.
15. Influences affecting Australian Climate.-(i) Oeneral. Australian history does not cover a sufficient period, nor is the country sufficiently occupied, to ascertain whether or not the advance of settlement has materially affected the climate as a whole. Local changes have, however, taken place, a fact which suggests that settlement and the treatment of the land have a distinct effect on local conditions. For example, the mean temperature of Sydney shows a rise of two tenths of a degree during the last twenty years, a change probably brought about by the great increase of residential and manufacturing buildings within the city and in the surrounding suburbs. Again, low-lying lands on the north coast of New South Wales, which originally were seldom subject to frosts, have, with the denudation of the surrounding hills from forests. experienced annual visitations, the probable explanation being that through the absence of trees the cold air of the high lands now flows unchecked and untempered down the sides of the hills to the valleys and lower lands.
(ii) Influence of Forests on Climate. As already indicated, forests doubtless exercise a great influence on local climate, and hence, to the extent that forestal undertakings will allow, the weather can be controlled by human agency. The direct action of forests is an equalizing one; thus, especially in equatorial regions, and during the warmest portion of the year, they considerably reduce the mean temperature of the air. They also reduce the diumal extremes of shade temperatures by altering the extent of radiating surface by evaporation, and by checking the movement of air, and while decreasing evaporation from the ground, they increase the relative bumidity. Vegetation greatly diminishes the rate of flow-off of rain and the washing away of surface soil, and when a region is protected by trees, a steadier water supply is ensured, and the rainfall is better conserved. In regions of snowfall, the supply of water to rivers is similarly regulated, and without this and the sheltering influence of ravines and "gullies," watercourses supplied mainly by melting snow would be subject to alternative periods of flooding and dryness. This is borne out in the case of the inland rivers, the River Murray, for example, which has never been known to become dry, deriving its steadiness of flow mainly through the causes indicated.
(iii) Direct Influence of Forests on Rainfall. Whether forests have a dircet influence on rainfall is a debatable question, some authorities alleging that precipitation is undoubtedly induced by forests, while others take the opposite view.

Sufficient evidence exists, however, to prove that, even if the rainfall has not increased, the beneficial climatic effect of forest lands more than warrants their protection and extension. Rapid rate of evaporation, induced by both hot and cold winds, injures crops and makes life uncomfortable on the plains, and, while it may be doubted that the forest aids in increasing precipitation, it must be admitted that it docs check winds and the rapid evaporation due to them. Trees as wind-breaks have been successfully planted in central parts of the United States, and there is no reason why similar experiments should not be successful in many parts of the treeless interior of Australia. The belts should be planted at right angles to the direction of the prevailing parching winds, and if not more than half a mile apart will afford shelter to the enclosed areas.

In previous issues some notes on observations made in other countries were added (see Official Year Book No. 6, pp. 86 and 95).
16. Rainfall and Temperatures, Various Cities.-The following table shows rainfall and temperature for various important cities throughout the world, for the Federal Capital, and for the capitals of the Australian States.

RAINFALL AND TEMPERATURES-VARIOUS CITIES.

Federal Capital.

State Capitais.

.-					
Perth	\ldots	197	34.92	49.22	20.21
Adelaide	\ldots	140	21.14	30.87	11.39
Brishane	\ldots	137	45.44	88.26	16.17
Sydney	\ldots	138	47.54	82.76	21.49
Melbourne	\cdots	115	25.66	38.04	15.61
Hobart	177	23.97	43.39	13.43	

(a)	(b)
73.1	56.
73.0	53.
76.6	59
7 I .0	5
66.6	5
6 I .4	4

(b)
(a) Mean of the three hottest months.
(b) Mean of the three coldest months.
17. Climatological Tables.-The means, averages, extremes, totals, etc., for a number of climatological elements have been determined from long series of observations at the Australian capitals up to and including the year 1934. These are given in the following tables:-

CLIMATOLOGICAL DATA-CANBERRA, FEDERAL CAPITAL TERRITORY.

Lat. $35^{\circ} 20^{\prime}$ S., Long. $149^{\circ} 15^{\prime}$ E. Heiget above M.S.L. 1, 837 Fr. Baroneter, Wind, Evaporation, Lightning, Clouds, and Clear Days.

Temperature and Sunshene.

Humidity, Ratnfall, and Def.

CLIMATOLOGICAL DATA-PERTH, WESTERN AUSTRALIA.

Lat. $31^{\circ} 57^{\prime}$ S., Long. $115^{\circ} 50^{\prime}$ E. Heioht above M.S.L. 197 Ft.

Temperature and Sunshine.

Humidity, Raineale, and Dew.

(a) Various years.
(b) Jan., Feb., March., A pril, Nov. and Dec., various years.

Climatological data-adelaide, south australia.

Lat. $34^{\circ} 56^{\prime}$ S., Long. $138^{\circ} 35^{\prime}$ E. Height above M.S.L. 140 Ft.
Barometer, Wind, Evaporation, Lightning, Clouds, and Clear Days.

(a) 10/4/96 and 3I/8/97.

Temperature and Suxshine.

Month.	Mean Temperature (Fahr.).		Extreme Shade Temperature (Fahr.).			Extreme Temperature (Fahr.).		
	Mean. Mean Max. Min.	Mean.	Highest.	Lowest.		Highest. in Sun.	Lowest. on Grass.	
No. of yrs. over which observation extends.	78 78	78	78	78	78	57	74	53
Jannary	86.161 .5	73.8	116.3 26/58	45.1 21/84	71.2	$180.018 / 82$	36.5 14/79	309.8
February	86.1562 .0	74.0	113.6 12/99	45.5 23/18	68.1	$170.510 \% 00$	35.8 23/26	264.0
March	$80.8: 58.9$	69.9	$110.5 \quad 9 / 34$	$43.921 / 33$	66.6	$174.017 / 83$	$32.121 / 33$	239.3
April	73.3 54.5	63.9	98.0 10/66	39.6 15/59	58.4	$155.01 / 83$	$30.216 / 17$	181.I
May	65.850 .3	58.0	89.5 4/2I	36.9 (a)	52.6	$14^{8.2} 12 / 79$	25.6 19/28	149.5
June	60.4 46.7	53.6	$76.023 / 65$	32.5 27/76	43.5	$13^{8.8} 18 / 79$	$22.912 / 13$	123.6
July	59.0, 44.7	5 5.9	74.0 11/06	32.0 24/08	42.0	$134.526 / 90$	$22.130 / 29$	137.3
August	61.9145 .9	53.9	$85.031 / 11$	$32.317 / 59$	52.7	$140.031 / 92$	$22.811 / 29$	163.6
September	$66.4,48.0$	57.2	90.7 23/82	$32.74 / 58$	58.0	$160.5 \quad 23 / 82$	25.0 25/27	185.1
October	72.4 51.4	61.9	102.9 $21 / 22$	$36.0-157$	66.9	$162.030 / 21$	27.8 (c)	226.9
November.	78.6. 55.4	67.0	$113.521 / 65$	40.8 2/09	72.7	166.9 20/78	$31.5 \quad 2 / 09$	263.6
December	83.258 .9	71.1	114.6 29/31	43.0 (b)	71.6	175.7 7/99	$32.5 \quad 4 / 84$	302.1
$\text { Year }\left\{\begin{array}{l} \text { Averages } \\ \text { Extremes } \end{array}\right.$	72.3 53.2	63.0	116.3 26/1/58	32.0 $24 / 7 / 08$	84.3	180.0 $18 / 1 / 82$	22.1 $30 / 7 / 29$	2545.9 (d)

(a) $26 / 1895$ and $24 / 1904$.
(b) $16 / 186 \mathrm{I}$ and $\overline{4 / 5906 .}$
(c) $2 /$ 19 8 and $4 / 193 \mathrm{I}$.
(d) Total for year.

Humidity, Rayfall, and Dew.

(a) Various years.
(b) January, February, March, December, various years.

CLIMATOLOGICAL DATA-BRISBANE, QUEENSLAND.

Lat. $27^{\circ} 28^{\prime}$ S., Long. $153^{\circ} 2^{\prime}$ E. Height above M.S.L. 137 Ft.
Barometer, Wind, Evaporation, Lightning, Clouds, and Clear Days.

Temperature and Sunsitine.

(a) 9/96 and 5/03.
(b) $12 / 94$ and $2 / 96$.
(c) 12/7/94 and 2/7/96.
(d) Total for year.

Humidity, Rainfall. and Dew.

(a) $1862,1869,1880$.
(b) March, May, June, July, August, and November, various years.
(c) $15 / 76$
and $16 / 89$.

CLIMATOLOGICAL DATA-SYDNEY, NEW SOUTH WALES.

Lat. $33^{\circ} 52^{\prime}$ S., Long. $151^{\circ} 12^{\prime}$ E. Height above M.S.L. i3 8 Fr. Baroneter, Wind, Evaporation, Lightning, Clouds, and Clear Days.

Temperature and Sunshine.

Month.	Mean Temperature (Fahr.).	Extreme Shade Temperature (Fahr .).			ExtremeTemperature (Fahr.).Highest.Howestin Sun.		
	$\begin{aligned} & \text { Mean Mean Mean. } \\ & \text { Max. Min. } \end{aligned}$	Highest.	Lowest.				
No. of yrs. over which observation extends.	76	76	76	76	73	76	$14 \dagger$
January	78.4 $164.9 \mid 71.6$	$108.513 / 96$	$5 \mathrm{I} .214 / 65$	57.3	164.3 26/15	7	23 T .4
February	$77.7\|65.0\| 75$	107.8 8/26	49.3 28/63	58.5	$161.281 / 26$	42.8 22/33	20
March	$75.763 .0 \mid 69.3$,	102.6 3/69	$48.814 / 56$	53.8	$158.310 / 26$	39.9 17/13!	198
April	71.3 [$58.0 \mid 64.61$	$91.020 / 22$	44.6 2\%/64	46.4	144:1 10/77;	33.3 24/09	180
May	$65.6,52.2$ 58.9 ।	86.0 I/19	40.2 22/59	45.8	129.7 1/96	29.3 25/17	172
June	61.2 48.3 54,7	$80.411 / 31$	35.7 22/32	44.7	$125.5 \quad 2 / 23$	28.0 22/32	157
July		78.3 22/26	35.9 12/90	42.4	$124.719 / 77$	$24.0 \quad 4 / 93^{1}$	185
August	62.8; 47.5 55.2	$82.031 / 84$	$36.8 \quad 3 / 72$	45.2	$149.030 / 78$	26.1 4/o9	219
September		92.3 27/19	$40.8 \times 8 / 64$	51.5	$142.212 / 78$	30. $117 / 05$	218.
October	$7 \times .3$ 55.8: 63.6!	98.9 19/98	$42.26 / 27$	56.7	$152.220 / 33$	32.7 9/051	239.8
November	$74.3 \quad 59.6: 67.0$,	$102.721 / 78$	45.8 1/05	56.9	$158.528 / 99$	36.0 6/06	231
December	$77.0,62.8$, 69.9	$107.531 / 04$	$48.43 / 24$	59.1	164.5 27/89,	$4 \mathrm{x} .4 \quad 3 / 24^{\prime}$	227
lear $\left\{\begin{array}{l}\text { Averages } \\ \text { Extremes }\end{array}\right.$		108.5 $13 / 1 / 95$	35.7 ${ }^{22 / 6 / 32}$	72.8	164.5 $27 / 12 / 89$	$\begin{gathered} 24.0 \\ 4 / 7 / 93 \end{gathered}$	

(a) Total for year.

Humidity, Ralnfall, and Dew.

- Early records revised during 1929. Values for period 1867 -September 1885 , reduced 20 per cent.; for period September 1885 to March 1913, reduced ro per cent. \quad From 192 I only; previous records discarded owing to faulty exposure of instruments.

CLIMATOLOGICAL DATA－MELBOURNE，VICTORIA．

Lat． $37^{\circ} 49^{\prime}$ S．，Long． $144^{\circ} 58^{\prime}$ E．Height above M．S．L．，if5 Ft． Barometer，Wind，Evaporation，Lightnivg，Clouds，and Clear Days．

Temperature and Sunshine．

（a） $6 / 18 \overline{65}$ and $\overline{77 / r 922 .}$
（b） $17 / 188 \ddot{4}$ and $20 / 1897$.
（c）Total for year．
Humidity，Rajnfall，and Dew．

Month．	＇Vapour＇	Rel．Hum．（\％）					Rainfall（inches）．					Dew．
	Pres－sure（inches）．-Meang a．m．											
												5
						\bigcirc						0
					\％	$1 \stackrel{7}{-\infty}$	要志					zA
		톨	등	厚	\pm	產気	呺				－	들
				号忽	気或		\％					家客
No．of yra．over which observation extends．												
	27	27	27	27	79	79	79	7	9		6	27
January	0.385	－58	65	50	1．88	8	5.681904	0.01	1932	2.97	9／97	2.6
February	0.417		69	48	1.74	${ }^{7}$	6.241904	0.03	1870	3.37	18／19	4.0
March	0.382		$\begin{aligned} & 73 \\ & 82 \end{aligned}$	57	2.24 ｜			0.14	1934	3.55	5／19	7.8
April	0.343	$\begin{aligned} & 64 \\ & 72 \end{aligned}$		66	2.24	11	7.50 6.71911 1901	Nil	1923	2.28	22／01	
May	0.311	79	86	7176	2.13	13	4.311862	0.14	1934	1.85	7／91	$\begin{array}{r} 9.4 \\ 10.2 \end{array}$
June	0.278	83	89		2.05	14	4.511859	0.73	1877	1.74 21／04		8.8
July	0.265	82	86	76	1.86	${ }^{1}$	7.021891	0.57	1902	2.71	$21 / 04$ $12 / 91$	8.8
August ．	0.270	76	$\begin{aligned} & 82 \\ & 76 \end{aligned}$	70	$\begin{aligned} & 1.90 \\ & 2.33 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{array}{ll} 4.04 & 1924 \\ 7.93 & 1916 \end{array}$	0.48	1903	$1.94 \quad 26 / 24$		7.8
September	0.289	68		60				0.52	1907	$2.62 \quad 12 / 80$		6.7
October	0.305	$\begin{aligned} & 62 \\ & 60 \end{aligned}$	$\begin{aligned} & 76 \\ & 67 \end{aligned}$	$\begin{aligned} & 53 \\ & 52 \end{aligned}$	2.66 2.27	13	$\begin{aligned} & 7.931916 \\ & 7.65 \quad 1869 \end{aligned}$	0.29	1914	3.00	17／69	5.62.1
November	0.335		$\begin{aligned} & 67 \\ & 69 \end{aligned}$				6.71 7.18 1863	0.25	$\begin{aligned} & 1895 \\ & 1904 \end{aligned}$	2.57 16／76		
December	0.367	59	69	51	2.36	9		0.11		3.20	1／34	1.9
¢Totals	－	－		－	25.66	139	\cdots					75.7
Year $\left\{\begin{array}{l}\text { Averages }\end{array}\right.$	0.324	69	$\overline{89}$	48	－	－	7.93 － 1916					－

CLIMATOLOGICAL DATA-HOBART, TASMANIA.

Lat. $42^{\circ} 53^{\prime}$ S., Long. $147^{\circ} 20^{\prime}$ E. Height above M.S.L., 177 Frt.
Barometer, Wind, Evaporation, Ligittntng, Clouds, and Clear Days.

Temperature and Sunshine.

[^3]Humidity, Ratnfall, and Dew.

(a) 4.18 กn $28 / 54$.

[^0]: - Prepared from data supplied by the Commonwealth Meteorologist, W. S. Watt, Esquire.

[^1]: - In Australia, artificial storage ponds or reservoirs are called "tanks."

[^2]: Notr.-The above average rainfall flgures for Brisbane, Sydney and Melbourne differ slightly from the mean annual falls given in the Climatological Tables and on page 54 , which are for a less number of years. A nnual totals from 1860 to 1901 inclusive will be found in Otficial Year Book No. 15 , page 53.

[^3]: (a) 27/49 and 1/00.
 (b) 5/86 and $13 / 05$.
 (c) $-/ 89$ and $-/ 93$. (d) $1 / 86$ and $-/ 99$.
 (e) Total ior year. - Early records discarded owing to faulty instrument.

